skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Popov, Ivan A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Praseodymium in the +5 oxidation state is a long-sought connection between lanthanide, early-transition and actinide metal redox chemistries. Unique among the lanthanide series, evidence for molecular pentavalent praseodymium species has been observed in the gas phase and noble gas matrix isolation conditions. Here we report the low-temperature synthesis and characterization of a molecular praseodymium complex in the formal +5 oxidation state, [Pr5+(NPtBu3)4][X−] (where tBu = tert-butyl and X− = tetrakis(pentafluorophenyl)borate or hexafluorophosphate). Single-crystal X-ray diffraction, solution-state spectroscopic, solution magnetometric, density functional theory and multireference wavefunction-based methods indicate a highly multiconfigurational singlet ground state. An inverted ligand field drives this unique electronic structure, which establishes a critical link in understanding the bonding of high-valent metal complexes across the periodic table. 
    more » « less
    Free, publicly-accessible full text available April 7, 2026
  2. Structural distortion of the secondary coordination sphere driven by the incorporation of an alkali metal in Ce3+imidophosphorane complexes tunes the Ce3+/4+oxidation potential. 
    more » « less
  3. We report the experimental observation and spectroscopic characterization, and structure and bonding analyses of copper–borozene complexes. 
    more » « less
  4. The molecular tetravalent oxidation state for praseodymium is observed in solution via oxidation of the anionic trivalent precursor [K][Pr 3+ (NP(1,2-bis- t Bu-diamidoethane)(NEt 2 )) 4 ] (1-Pr(NP*)) with AgI at −35 °C. The Pr 4+ complex is characterized in solution via cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, and EPR spectroscopy. Electrochemical analyses of [K][Ln 3+ (NP(1,2-bis- t Bu-diamidoethane)(NEt 2 )) 4 ] (Ln = Nd and Dy) by cyclic voltammetry are reported and, in conjunction with theoretical modeling of electronic structure and oxidation potential, are indicative of principal ligand oxidations in contrast to the metal-centered oxidation observed for 1-Pr(NP*). The identification of a tetravalent praseodymium complex in in situ UV-vis and EPR experiments is further validated by theoretical modeling of the redox chemistry and the UV-vis spectrum. The latter study was performed by extended multistate pair-density functional theory (XMS-PDFT) and implicates a multiconfigurational ground state for the tetravalent praseodymium complex. 
    more » « less
  5. null (Ed.)